
- cTiled -
Tiled map loader for Cerberus-X

These functions are used to load TMX files created with the Tiled map editor (www.mapeditor.org). With few
lines of code you can show complex maps or if you prefer use all the variables to create complex things.

Examples:

• Basic - It contains a very basic example of how a TMX file is loaded and how the data is used to
draw a map with all its layers and tilesets.

• Animation - It is a simple example of how you can create animations with tiles, as well as how the
tileset is used externally (TSX files). It can be done in many ways.

• Properties - This example shows how to extract the properties of the objects. Properties can be
present in "layers", "tileset" and many others. They contain information added by the user.

• Shapes - The objects can have many shapes to be used on the map. The most common is the
rectangle but you can use others such as ellipses, points or even create polygons. In this example I
visually show what shapes it has and how they could be used.

• Tilesets - This example shows how several different tileset can be used on the same map to add
more images, effects or animations.

Too easy!

[FUNCTIONS]

CTILED(filename:String)
Create the environment to be able to load and use tmx files.

• filename: File name ".tmx" to load. For now it only accepts Tile layer format in CSV, XML and Base64
uncompressed. If it is in compressed Base64 it cannot be used (for now).

Example:
Import ctiled

Function Main()

 New Game()

End

Class Game Extends App

 Field tld:CTILED

 Method OnCreate()

 tld = New CTILED("basic.tmx")

 End

 Method OnRender()

 Cls(0, 0, 0)

 ' Extracts data from all tile sets.
 For Local ts:=Eachin tld.tileset

 ' Extracts data from all layers.
 For Local lyr:=Eachin tld.layer

 For Local d:Int=0 Until lyr.data.Count

 ' Tile position.
 Local x:Int = d Mod lyr.width
 Local y:Int = d / lyr.width
 Local id:Int = lyr.data.ToArray[y * lyr.width + x] - ts.firstgid

 ' Draw the tile.
 If id>=0 Then DrawImage(ts.image, x * tld.tileWidth, y * tld.tileHeight, id)

 Next
 Next
 Next

 End

End

Limitations:
• Only can use the Tile layer format in CSV, XML and Base64 not compressed.
• There are many variables that cannot be used yet.

Map

Field version:String
The TMX format version. Was “1.0” so far, and will be incremented to match minor Tiled releases.

Field tiledVersion:String
The Tiled version used to save the file.

Field orientation:String
Map orientation. Tiled supports “orthogonal”, “isometric”, “staggered” and “hexagonal”

Field renderOrder:String
The order in which tiles on tile layers are rendered.

Field width:Int
The map width in tiles.

Field height:Int
The map height in tiles.

Field tileWidth:Int
The width of a tile.

Field tileHeight:Int
The height of a tile.

Field infinite:Int
Whether this map is infinite. An infinite map has no fixed size and can grow in all directions.

Field nextLayerID:Int
Stores the next available ID for new layers.

Field nextObjectID:Int
Stores the next available ID for new objects.

Field backgroundColor:Color
The background color of the map.

Field tileset:=New List<cTILESET>
It contains an array with all the tilesets that the map contains.

Field layer:=New List<cLAYER>
It contains an array with all the layers that the map contains.

Field objectgroup:=New List<cOBJECTGROUP>
It contains an array with all the objects groups that the map contains.

Field properties:=New List<cPROPERTY>
Contains an array with all the properties. To use correctly you must know the name and type of the variable
to use.

Class cTILESET

Field firstgid:Int
The first global tile ID of this tileset (this global ID maps to the first tile in this tileset).

Field name:String
The name of this tileset.

Field tileWidth:Int
The (maximum) width/height of the tiles in this tileset.

Field tileHeight:Int
The (maximum) width/height of the tiles in this tileset.

Field tileCount:Int
The number of tiles in this tileset

Field columns:Int
The number of tile columns in the tileset. For image collection tilesets it is editable and is used when
displaying the tileset.

Field source:String
The reference to the tileset image file.

Field image:Image
This is the already loaded texture that will be used to display the tiles.

Class cTILE

Field id:Int
The local tile ID within its tileset.

Field animation:=New List<cFRAME>
It contains an array with all the frames of the animation that the tile has.

Field objectgroup:=New List<cOBJECTGROUP>
It contains an array with all the groups of objects that the tile contains.

Class cFRAME

Field tileid:Int
The local ID of a tile within the parent tileset.

Field duration:Int
How long (in milliseconds) this frame should be displayed before advancing to the next frame.

Class cLAYER

Field id:Int
Unique ID of the layer. Each layer that added to a map gets a unique id.

Field name:String
The name of the layer.

Field width:Int
The width of the layer in tiles.

Field height:Int
The height of the layer in tiles.

Field tintColor:Color
A color that is multiplied with any tile objects drawn by this layer.

Field data:=New List<Int>
It contains a matrix with all the tile IDs and their position on the map.

Field properties:=New List<cPROPERTY>
Contains an array with all the properties. To use correctly you must know the name and type of the variable
to use.

Class cOBJECTGROUP

Field id:Int
Unique ID of the layer. Each layer that added to a map gets a unique id.

Field name:String
The name of the object group.

Field tintcolor:Color
A color that is multiplied with any tile objects drawn by this objectgroup.

Field object:=New List<cOBJECT>
Contains an array with all the objects in the group.

Field properties:=New List<cPROPERTY>
Contains an array with all the properties. To use correctly you must know the name and type of the variable
to use.

Class cOBJECT

Field id:Int
Unique ID of the object. Each object that is placed on a map gets a unique id.

Field x:Int
The x coordinate of the object in pixels.

Field y:Int
The y coordinate of the object in pixels.

Field rotation:Int
The rotation of the object in degrees clockwise around (x, y).

Field width:Int
The width of the object in pixels.

Field height:Int
The height of the object in pixels.

Field shape:Int
The object can have several shapes and each one has different variables:

eRECTANGLE:Used to mark an object as a rectangle.

eELLIPSE: Used to mark an object as an ellipse. Used to mark an object as an ellipse. The existing x, y,
width and height attributes are used to determine the size of the ellipse.

ePOINT: Used to mark an object as a point. The existing x and y attributes are used to determine the
position of the point.

ePOLYGON
- Field points:=New List<cVECTOR> : A list of x,y coordinates in pixels.

Each polygon object is made up of a space-delimited list of x,y coordinates. The origin for these coordinates
is the location of the parent object. By default, the first point is created as 0,0 denoting that the point will
originate exactly where the object is placed.

Field properties:=New List<cPROPERTY>
Contains an array with all the properties. To use correctly you must know the name and type of the variable
to use.

Class cPROPERTY

Field name:String
The name of the property.

Field type:String
The type of the property. Can be string, int, float, bool, color, file or object.

Field boolValue:Bool
Boolean properties have a value of either “true” or “false”.

Field intValue:Int
Integer value of the property.

Field floatValue:Float
Float value of the property.

Field fileValue:String
File properties are stored as paths relative from the location of the map file.

Field stringValue:String
String value of the property.

Field objectValue:Int
Object properties can reference any object on the same map and are stored as an integer (the ID of the
referenced object, or 0 when no object is referenced).

Field colorValue:Color
Color properties are stored in ARGB.

LICENSED

Copyright (c) 2021 TheMrCerebro
http://themrcerebro.com

cTiled - Zlib license.

This software is provided 'as-is', without any express or
implied warranty. In no event will the authors be held
liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute
it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the
original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being
the original software.

3. This notice may not be removed or altered from any source distribution.

If you think this tool is useful, you can help me in various ways: help me improve it,
advertising where you think is convenient or making a donation.

-To contact me or DONATION$-

or

themrcerebro@gmail.com

THANKS!!!

